import random
from collections import defaultdict
# 示例历史数据(需替换为实际数据)
history_data = [
{"numbers": [8,2,6], "sum": 16, "size": "大", "parity": "双", "result": "错"},
{"numbers": [1,0,3], "sum": 4, "size": "小", "parity": "双", "result": "中"},
# 添加更多历史数据...
]
# 统计历史频率
def analyze_trend(data):
stats = {
"size_count": defaultdict(int),
"parity_count": defaultdict(int),
"recent_size": [],
"recent_parity": []
}
for entry in data[-10:]: # 分析最近10期
stats["size_count"][entry["size"]] += 1
stats["parity_count"][entry["parity"]] += 1
stats["recent_size"].append(entry["size"])
stats["recent_parity"].append(entry["parity"])
return stats
# 生成下一期建议
def predict_next(stats):
# 倾向性建议(简单趋势模型)
size_suggestion = "大" if stats["size_count"]["大"] < stats["size_count"]["小"] else "小"
parity_suggestion = "单" if stats["parity_count"]["单"] < stats["parity_count"]["双"] else "双"
# 若最近连续3次同方向,建议反转(赌徒谬误逻辑)
if len(stats["recent_size"]) >= 3 and len(set(stats["recent_size"][-3:])) == 1:
size_suggestion = "大" if stats["recent_size"][-1] == "小" else "小"
if len(stats["recent_parity"]) >= 3 and len(set(stats["recent_parity"][-3:])) == 1:
parity_suggestion = "单" if stats["recent_parity"][-1] == "双" else "双"
return size_suggestion, parity_suggestion
# 生成随机数字组合(0-9选3个数字)
def generate_numbers():
return [random.randint(0, 9) for _ in range(3)]
# 主程序
if __name__ == "__main__":
stats = analyze_trend(history_data)
size, parity = predict_next(stats)
next_numbers = generate_numbers()
next_sum = sum(next_numbers)
print(f"历史统计:\n- 大小分布: 大={stats['size_count']['大']}次, 小={stats['size_count']['小']}次")
print(f"- 单双分布: 单={stats['parity_count']['单']}次, 双={stats['parity_count']['双']}次")
print(f"\n建议投注:{size} + {parity}")
print(f"模拟下一组数字: {next_numbers} (和值={next_sum}, {size if next_sum >= 14 else '小'}, {'单' if next_sum % 2 else '双'})")
print("\n⚠️ 风险提示:此为随机模拟,长期参与必输!请勿沉迷。")
aW1wb3J0IHJhbmRvbQpmcm9tIGNvbGxlY3Rpb25zIGltcG9ydCBkZWZhdWx0ZGljdAoKIyDnpLrkvovljoblj7LmlbDmja7vvIjpnIDmm7/mjaLkuLrlrp7pmYXmlbDmja7vvIkKaGlzdG9yeV9kYXRhID0gWwogICAgeyJudW1iZXJzIjogWzgsMiw2XSwgInN1bSI6IDE2LCAic2l6ZSI6ICLlpKciLCAicGFyaXR5IjogIuWPjCIsICJyZXN1bHQiOiAi6ZSZIn0sCiAgICB7Im51bWJlcnMiOiBbMSwwLDNdLCAic3VtIjogNCwgInNpemUiOiAi5bCPIiwgInBhcml0eSI6ICLlj4wiLCAicmVzdWx0IjogIuS4rSJ9LAogICAgIyDmt7vliqDmm7TlpJrljoblj7LmlbDmja4uLi4KXQoKIyDnu5/orqHljoblj7LpopHnjocKZGVmIGFuYWx5emVfdHJlbmQoZGF0YSk6CiAgICBzdGF0cyA9IHsKICAgICAgICAic2l6ZV9jb3VudCI6IGRlZmF1bHRkaWN0KGludCksCiAgICAgICAgInBhcml0eV9jb3VudCI6IGRlZmF1bHRkaWN0KGludCksCiAgICAgICAgInJlY2VudF9zaXplIjogW10sCiAgICAgICAgInJlY2VudF9wYXJpdHkiOiBbXQogICAgfQogICAgCiAgICBmb3IgZW50cnkgaW4gZGF0YVstMTA6XTogICMg5YiG5p6Q5pyA6L+RMTDmnJ8KICAgICAgICBzdGF0c1sic2l6ZV9jb3VudCJdW2VudHJ5WyJzaXplIl1dICs9IDEKICAgICAgICBzdGF0c1sicGFyaXR5X2NvdW50Il1bZW50cnlbInBhcml0eSJdXSArPSAxCiAgICAgICAgc3RhdHNbInJlY2VudF9zaXplIl0uYXBwZW5kKGVudHJ5WyJzaXplIl0pCiAgICAgICAgc3RhdHNbInJlY2VudF9wYXJpdHkiXS5hcHBlbmQoZW50cnlbInBhcml0eSJdKQogICAgCiAgICByZXR1cm4gc3RhdHMKCiMg55Sf5oiQ5LiL5LiA5pyf5bu66K6uCmRlZiBwcmVkaWN0X25leHQoc3RhdHMpOgogICAgIyDlgL7lkJHmgKflu7rorq7vvIjnroDljZXotovlir/mqKHlnovvvIkKICAgIHNpemVfc3VnZ2VzdGlvbiA9ICLlpKciIGlmIHN0YXRzWyJzaXplX2NvdW50Il1bIuWkpyJdIDwgc3RhdHNbInNpemVfY291bnQiXVsi5bCPIl0gZWxzZSAi5bCPIgogICAgcGFyaXR5X3N1Z2dlc3Rpb24gPSAi5Y2VIiBpZiBzdGF0c1sicGFyaXR5X2NvdW50Il1bIuWNlSJdIDwgc3RhdHNbInBhcml0eV9jb3VudCJdWyLlj4wiXSBlbHNlICLlj4wiCiAgICAKICAgICMg6Iul5pyA6L+R6L+e57utM+asoeWQjOaWueWQke+8jOW7uuiuruWPjei9rO+8iOi1jOW+kuiwrOivr+mAu+i+ke+8iQogICAgaWYgbGVuKHN0YXRzWyJyZWNlbnRfc2l6ZSJdKSA+PSAzIGFuZCBsZW4oc2V0KHN0YXRzWyJyZWNlbnRfc2l6ZSJdWy0zOl0pKSA9PSAxOgogICAgICAgIHNpemVfc3VnZ2VzdGlvbiA9ICLlpKciIGlmIHN0YXRzWyJyZWNlbnRfc2l6ZSJdWy0xXSA9PSAi5bCPIiBlbHNlICLlsI8iCiAgICBpZiBsZW4oc3RhdHNbInJlY2VudF9wYXJpdHkiXSkgPj0gMyBhbmQgbGVuKHNldChzdGF0c1sicmVjZW50X3Bhcml0eSJdWy0zOl0pKSA9PSAxOgogICAgICAgIHBhcml0eV9zdWdnZXN0aW9uID0gIuWNlSIgaWYgc3RhdHNbInJlY2VudF9wYXJpdHkiXVstMV0gPT0gIuWPjCIgZWxzZSAi5Y+MIgogICAgCiAgICByZXR1cm4gc2l6ZV9zdWdnZXN0aW9uLCBwYXJpdHlfc3VnZ2VzdGlvbgoKIyDnlJ/miJDpmo/mnLrmlbDlrZfnu4TlkIjvvIgwLTnpgIkz5Liq5pWw5a2X77yJCmRlZiBnZW5lcmF0ZV9udW1iZXJzKCk6CiAgICByZXR1cm4gW3JhbmRvbS5yYW5kaW50KDAsIDkpIGZvciBfIGluIHJhbmdlKDMpXQoKIyDkuLvnqIvluo8KaWYgX19uYW1lX18gPT0gIl9fbWFpbl9fIjoKICAgIHN0YXRzID0gYW5hbHl6ZV90cmVuZChoaXN0b3J5X2RhdGEpCiAgICBzaXplLCBwYXJpdHkgPSBwcmVkaWN0X25leHQoc3RhdHMpCiAgICBuZXh0X251bWJlcnMgPSBnZW5lcmF0ZV9udW1iZXJzKCkKICAgIG5leHRfc3VtID0gc3VtKG5leHRfbnVtYmVycykKICAgIAogICAgcHJpbnQoZiLljoblj7Lnu5/orqHvvJpcbi0g5aSn5bCP5YiG5biDOiDlpKc9e3N0YXRzWydzaXplX2NvdW50J11bJ+WkpyddfeasoSwg5bCPPXtzdGF0c1snc2l6ZV9jb3VudCddWyflsI8nXX3mrKEiKQogICAgcHJpbnQoZiItIOWNleWPjOWIhuW4gzog5Y2VPXtzdGF0c1sncGFyaXR5X2NvdW50J11bJ+WNlSddfeasoSwg5Y+MPXtzdGF0c1sncGFyaXR5X2NvdW50J11bJ+WPjCddfeasoSIpCiAgICBwcmludChmIlxu5bu66K6u5oqV5rOo77yae3NpemV9ICsge3Bhcml0eX0iKQogICAgcHJpbnQoZiLmqKHmi5/kuIvkuIDnu4TmlbDlrZc6IHtuZXh0X251bWJlcnN9ICjlkozlgLw9e25leHRfc3VtfSwge3NpemUgaWYgbmV4dF9zdW0gPj0gMTQgZWxzZSAn5bCPJ30sIHsn5Y2VJyBpZiBuZXh0X3N1bSAlIDIgZWxzZSAn5Y+MJ30pIikKICAgIHByaW50KCJcbuKaoO+4jyDpo47pmanmj5DnpLrvvJrmraTkuLrpmo/mnLrmqKHmi5/vvIzplb/mnJ/lj4LkuI7lv4XovpPvvIHor7fli7/msonov7fjgIIiKQ==