fork download
  1. import tensorflow as tf
  2. from tensorflow.keras.layers import Input, Dense
  3. from tensorflow.keras import Model
  4. from tensorflow.keras.optimizers import Adam
  5. from tensorflow.keras.losses import MeanAbsoluteError
  6. from tensorflow.keras.initializers import Constant
  7. import numpy as np
  8.  
  9. models = []
  10. for i in range(3):
  11. inp = Input(shape = (2, ))
  12. outp = Dense(2, use_bias = False, kernel_initializer = Constant(0.5))(inp)
  13. models.append(Model(inputs = inp, outputs = outp))
  14. opts = [Adam(0.1)] * len(models)
  15. # opts = [Adam(0.1) for _ in range(len(models))]
  16. [m.compile(loss = MeanAbsoluteError(), optimizer = o) for m, o in zip(models, opts)]
  17.  
  18. x_data = np.asarray([[1., 2.]])
  19. print(x_data)
  20. y_data = np.asarray([[2., 2.5]])
  21. print(y_data)
  22. print('-'*5)
  23. for m in models:
  24. pred = m.predict(x_data)
  25. print(pred)
  26.  
  27. for i in range(3):
  28. print('-'*5)
  29. for m in models:
  30. m.fit(x_data, y_data, verbose = 0)
  31. pred = m.predict(x_data)
  32. print(pred)
Success #stdin #stdout 4.7s 350828KB
stdin
Standard input is empty
stdout
[[1. 2.]]
[[2.  2.5]]
-----
[[1.5 1.5]]
[[1.5 1.5]]
[[1.5 1.5]]
-----
[[1.7999988 1.7999988]]
[[1.7232393 1.7232393]]
[[1.6916438 1.6916438]]
-----
[[2.0342803 2.0342803]]
[[1.9431531 1.9431531]]
[[1.9021363 1.9021363]]
-----
[[2.0965831 2.2720845]]
[[2.1759686 2.1759686]]
[[2.1316643 2.1316643]]