fork download
  1. PROGRAM cluster
  2. !--------------------------------------------------------!
  3. ! Example Molecular Dynamics Program ver.2.2 !
  4. ! !
  5. ! [プログラム概要] !
  6. ! ・ヴェルレ法による時間発展(数値積分) !
  7. ! ・N粒子孤立系に対するNVEアンサンブル !
  8. ! ・Lennard-Jones (12-6) ポテンシャル !
  9. ! !
  10. ! [改訂履歴] !
  11. ! 2002.10.05 ver 1.0 岡田 勇 !
  12. ! 2011.06.08 ver 2.0 北 幸海 (Fortran 90化) !
  13. ! 2020.12.14 ver 2.1 北 幸海 (単純化) !
  14. ! 2020.12.15 ver 2.2 北 幸海 (ウェブ実習用に標準出力化) !
  15. !--------------------------------------------------------!
  16. IMPLICIT NONE
  17.  
  18. !----- 固定変数 (変更しないこと) -----
  19. INTEGER, PARAMETER :: &
  20. NpTot = 2 ! 粒子数
  21. REAL(8), PARAMETER :: &
  22. Eps = 1.d0, & ! L-Jポテンシャルのパラメータ1
  23. Sigma = 1.d0, & ! L-Jポテンシャルのパラメータ2
  24. Mass = 1.d0 ! 粒子の質量
  25.  
  26.  
  27. !----- ユーザー変数 (課題に応じて変更する変数) -----
  28. ! Dt: 時間ステップ
  29. ! MDStep: ステップ数(繰り返しの回数)
  30. ! --> Dt = 1.d-2〜1.d-3が適当. Dt*MDStep= 1〜3 とする.
  31. ! --> サーバーに負荷をかけないよう Dt ≧ 1.d-5 とする
  32. INTEGER, PARAMETER :: MDStep = 2000 ! 総ステップ数
  33. REAL(8), PARAMETER :: Dt = 1.d-3 ! 時間ステップ
  34. REAL(8), PARAMETER :: R2_ini = 0.56d0 ! 粒子2の初期位置
  35. REAL(8), PARAMETER :: V2_ini = -1.4d0 ! 粒子2の初速
  36. INTEGER, PARAMETER :: NOut = 100 ! 出力データ数(MDStep以下で100を超えない整数)
  37.  
  38.  
  39. !----- 以下の変数・配列はプログラム内で自動更新 -----
  40. INTEGER i
  41. INTEGER :: NSum = 0, & ! 蓄積の回数
  42. n = 0, & ! 現在のステップ数
  43. PrintInt = 1 ! 出力間隔
  44. REAL(8) :: &
  45. R0(3, NpTot) = 0.d0, & ! 初期位置
  46. V(3, NpTot) = 0.d0, & ! 速度
  47. R(3, NpTot) = 0.d0, & ! 位置
  48. dR(3, NpTot) = 0.d0, & ! 初期位置からの変位
  49. dR_prev(3, NpTot) = 0.d0, & ! 時刻t(n-1)とt(n)間の変位
  50. dR_next(3, NpTot) = 0.d0, & ! 時刻t(n)とt(n+1)間の変位
  51. F(3, NpTot) = 0.d0, & ! 力
  52. T = 0.d0, & ! 運動エネルギー
  53. P = 0.d0, & ! ポテンシャルエネルギー
  54. H = 0.d0, & ! 全エネルギー(ハミルトニアン)
  55. H0 = 0.d0, & ! 計算開始時の全エネルギー
  56. V0 = 0.d0, & ! 計算開始時の平均速度
  57. MaxErrH = 0.d0, & ! ハミルトニアンの最大誤差
  58. SumH = 0.d0, & ! 蓄積されたハミルトニアン
  59. SumH2 = 0.d0, & ! 蓄積されたハミルトニアンの二乗
  60. SumT = 0.d0, & ! 蓄積された運動エネルギー
  61. SumT2 = 0.d0 ! 蓄積された運動エネルギーの二乗
  62.  
  63.  
  64. !----- Safety net -----
  65. if (Dt*MDStep > 3.d0) then
  66. write(6,*) 'Too long simulation time !!'
  67. stop
  68. endif
  69.  
  70.  
  71. !----- 各種設定値の出力 -----
  72. PrintInt = MDStep/NOut
  73. write(6,*) '=============================='
  74. write(6,*) 'MD simulation by Verlet method'
  75. write(6,*) '=============================='
  76. write(6,*) ' # of particles = ', NpTot
  77. write(6,*) ' L-J parameters:'
  78. write(6,*) ' --> Epsilon = ', Eps
  79. write(6,*) ' --> Sigma = ', Sigma
  80. write(6,*) ' Mass of particle = ', Mass
  81. write(6,*) ' Time step = ', Dt
  82. write(6,*) ' # of MD steps = ', MDStep
  83. write(6,*) ' Simulation time = ', Dt*real(MDStep,8)
  84. write(6,*) ' Print interval = ', Dt*real(PrintInt,8)
  85. write(6,*)
  86.  
  87.  
  88. !----- 粒子の初期情報の設定 -----
  89. ! 初期位置
  90. R0(1,2) = R2_ini ! 粒子1
  91. R0(1,1) = -R0(1,2) ! 粒子2
  92.  
  93. ! 初速
  94. V(1,2) = V2_ini ! 粒子1
  95. V(1,1) = -V(1,2) ! 粒子2
  96.  
  97. ! 初速度の大きさの平均値
  98. V0= 0.d0
  99. do i=1, NpTot
  100. V0= V0 + V(1,i)**2 + V(2,i)**2 + V(3,i)**2
  101. enddo ! i
  102. V0= sqrt(V0/real(NpTot,8))
  103.  
  104.  
  105. !----- 0ステップ目での力の計算 -----
  106. call ForcePotential (NpTot, n, MDStep, R0, dR, Eps, Sigma, P, F)
  107.  
  108.  
  109. !----- 1ステップ目の座標を計算 -----
  110. call Verlet (NpTot, n, MDStep, NSum, Dt, Mass, R0, P, R, F, V, &
  111. dR, dR_prev, dR_next, H, T, SumH, SumH2, SumT, SumT2)
  112.  
  113.  
  114. !----- ハミルトニアンの初期値を保存 -----
  115. H0 = H
  116.  
  117.  
  118. !----- 出力 -----
  119. ! ヘッダー情報の出力
  120. write(6,'(a)') '#time, position, velocity, kinetic, potential, hamiltonian'
  121.  
  122. ! 位置、速度などの出力.
  123. call Output (0, PrintInt, NpTot, n, MDStep, NSum, Dt, R, H, T, P, V, &
  124. H0, V0, SumH, SumH2, SumT, SumT2, MaxErrH)
  125.  
  126.  
  127. !----- 2ステップ目以降の時間発展 -----
  128. do n= 1, MDStep
  129.  
  130. ! nステップ目での力の計算
  131. call ForcePotential (NpTot, n, MDStep, R0, dR, Eps, Sigma, P, F)
  132.  
  133. ! (n+1)ステップ目の座標を計算
  134. call Verlet (NpTot, n, MDStep, NSum, Dt, Mass, R0, P, R, F, V, &
  135. dR, dR_prev, dR_next, H, T, SumH, SumH2, SumT, SumT2)
  136.  
  137. ! 出力
  138. call Output (0, PrintInt, NpTot, n, MDStep, NSum, Dt, R, H, T, P, V, &
  139. H0, V0, SumH, SumH2, SumT, SumT2, MaxErrH)
  140.  
  141. enddo ! n
  142.  
  143.  
  144. !----- 各種平均値を出力 -----
  145. call Output (1, PrintInt, NpTot, n, MDStep, NSum, Dt, R, H, T, P, V, &
  146. H0, V0, SumH, SumH2, SumT, SumT2, MaxErrH)
  147.  
  148. write(6,*) ' Done.'
  149. write(6,*)
  150.  
  151. !----- 主プログラムの終了 -----
  152. END PROGRAM cluster
  153.  
  154.  
  155.  
  156. SUBROUTINE ForcePotential(NpTot, n, MDStep, R0, dR, Eps, Sigma, P, F)
  157. !----------------------------------!
  158. ! ポテンシャルエネルギーと力の計算 !
  159. !----------------------------------!
  160. IMPLICIT NONE
  161. INTEGER, INTENT(in) :: NpTot, n, MDStep
  162. REAL(8), INTENT(in) :: R0(3,NpTot), dR(3,NpTot), Eps, Sigma
  163. REAL(8), INTENT(inout) :: P, F(3,NpTot)
  164. ! Local stuff
  165. INTEGER i, j
  166. REAL(8) R1, R2, Rij(3), dpdr, drdv(3)
  167.  
  168. F(:,:)=0.d0 ; P=0.d0
  169.  
  170. do i= 1, NpTot
  171. do j= 1, NpTot
  172.  
  173. if (i /= j) then
  174.  
  175. ! dR: displacement from time 0 to time n
  176. Rij(:) = (dR(:,j) - dR(:,i)) + (R0(:,j) - R0(:,i))
  177. R2 = Rij(1)**2 + Rij(2)**2 + Rij(3)**2
  178. R1 = sqrt(R2)
  179.  
  180. ! potential energy
  181. P = P + 4.d0 * Eps * ((Sigma**2/R2)**6 - (Sigma**2/R2)**3)
  182.  
  183. ! force
  184. dpdr = 4.d0 * Eps * (-12.d0*(Sigma**2/R2)**6 + 6.d0*(Sigma**2/R2)**3) / R1
  185. drdv(:) = -Rij(:) / R1
  186. F(:,i) = F(:,i) - dpdr*drdv(:)
  187.  
  188. endif ! i /= j
  189.  
  190. enddo ! j
  191. enddo ! i
  192.  
  193. P = 0.5d0*P
  194.  
  195. return
  196. END SUBROUTINE ForcePotential
  197.  
  198.  
  199.  
  200. SUBROUTINE Verlet(NpTot, n, MDStep, NSum, Dt, Mass, R0, P, R, F, V, &
  201. dR, dR_prev, dR_next, H, T, SumH, SumH2, SumT, SumT2)
  202. !--------------------------!
  203. ! Verlet法による座標の更新 !
  204. !--------------------------!
  205. IMPLICIT NONE
  206. INTEGER, INTENT(in) :: NpTot, n, MDStep
  207. INTEGER, INTENT(inout) :: NSum
  208. REAL(8), INTENT(in) :: R0(3,NpTot), P, Dt, Mass
  209. REAL(8), INTENT(inout) :: R(3,NpTot), F(3,NpTot), V(3,NpTot), dR(3,NpTot), &
  210. dR_prev(3,NpTot), dR_next(3,NpTot), H, T, SumH, &
  211. SumH2, SumT, SumT2
  212. ! Local stuff
  213. INTEGER i
  214.  
  215. !----- 0-th step -----
  216. if (n == 0) then
  217. ! current position
  218. R(:,:) = R0(:,:)
  219.  
  220. ! dR = dR_next = R(Δt) - R(0) = V(0)Δt + a(0)*(Δt)^2/2
  221. do i= 1, NpTot
  222. dR_next(:,i) = V(:,i)*Dt + 0.5d0*F(:,i)*Dt**2/Mass
  223. dR(:,i) = dR_next(:,i)
  224. enddo ! i
  225.  
  226.  
  227. !----- later steps -----
  228. elseif (n >= 1) then
  229. ! current position
  230. R(:,:) = R0(:,:) + dR(:,:)
  231.  
  232. ! dR_next = R(t+Δt) - R(t) = R(t) - R(t-Δt) + a(t)*(Δt)^2
  233. ! dR_prev = R(t) - R(t-Δt)
  234. ! dR = R(t+Δt) - R(0)
  235. do i= 1, NpTot
  236. dR_next(:,i) = dR_prev(:,i) + F(:,i)*Dt**2/Mass
  237. dR(:,i) = dR(:,i) + dR_next(:,i)
  238. V(:,i) = 0.5d0 * (dR_next(:,i) + dR_prev(:,i)) / Dt
  239. enddo
  240.  
  241. endif
  242.  
  243.  
  244. !----- Renaming for use at the next step -----
  245. dR_prev(:,:)= dR_next(:,:)
  246.  
  247.  
  248. !----- 運動エネルギーの計算 -----
  249. T = 0.d0
  250. do i= 1, NpTot
  251. T = T + 0.5d0 * Mass * (V(1,i)**2 + V(2,i)**2 + V(3,i)**2)
  252. enddo
  253.  
  254.  
  255. !----- ハミルトニアンの計算 -----
  256. H = T + P
  257.  
  258.  
  259. !----- 蓄積 -----
  260. NSum = NSum + 1 ! 蓄積の回数
  261. SumH = SumH + H ! ハミルトニアン
  262. SumH2 = SumH2 + H**2 ! ハミルトニアンの2乗
  263. SumT = SumT + T ! 運動エネルギー
  264. SumT2 = SumT2 + T**2 ! 運動エネルギーの2乗
  265.  
  266. return
  267. END SUBROUTINE Verlet
  268.  
  269.  
  270.  
  271. SUBROUTINE Output(mode, PrintInt, NpTot, n, MDStep, NSum, Dt, R, H, T, P, V, H0, V0, &
  272. SumH, SumH2, SumT, SumT2, MaxErrH)
  273. !------------!
  274. ! 結果の出力 !
  275. !------------!
  276. IMPLICIT NONE
  277. INTEGER, INTENT(in) :: mode, PrintInt, NpTot, n, MDStep, NSum
  278. REAL(8), INTENT(in) :: Dt, R(3,NpTot), H, T, P, V(3,NpTot), H0, V0, SumH, SumH2, SumT, SumT2
  279. REAL(8), INTENT(inout) :: MaxErrH
  280. ! Local stuff
  281. REAL(8) time, AveH, AveH2, AveT, AveT2, RMSD_H, RMSD_T
  282.  
  283. if (mode == 0) then
  284. !----- Output data at the current time -----
  285. time = Dt*real(n,8)
  286.  
  287. if ( (n==MDStep) .or. (mod(n,PrintInt)==0) ) &
  288. write(6, '( e12.6, 4(e14.6), e23.15 )') time, R(1,2), V(1,2), T, P, H
  289.  
  290. MaxErrH= max(MaxErrH, abs(H-H0)) ! Maximum error in Hamiltonian
  291.  
  292.  
  293. elseif (mode == 1) then
  294. !----- Compute root mean square deviation (RMSD) -----
  295. ! compute averages
  296. AveH = SumH /real(NSum,8) ! ハミルトニアン
  297. AveH2 = SumH2/real(NSum,8) ! ハミルトニアンの2乗
  298. AveT = SumT /real(NSum,8) ! 運動エネルギー
  299. AveT2 = SumT2/real(NSum,8) ! 運動エネルギーの2乗
  300.  
  301. ! compute RMSD
  302. RMSD_H = sqrt(abs(AveH2-AveH**2))
  303. RMSD_T = sqrt(abs(AveT2-AveT**2))
  304.  
  305. ! print
  306. write(6, *)
  307. write(6, *) '---------'
  308. write(6, *) ' Summary '
  309. write(6, *) '---------'
  310. write(6, '( a, e23.15 )') 'Dt =', Dt
  311. write(6, '( a, e23.15 )') 'V0 =', V0
  312. write(6, '( a, e23.15 )') 'RMSD(H) =', RMSD_H
  313. write(6, '( a, e23.15 )') 'Max. err.(H) =', MaxErrH
  314. write(6, '( a, e23.15 )') 'Final pos. =', R(1,2)
  315. write(6, '( 2(a, e23.15) )') '<H>=', AveH, ' +- ', RMSD_H
  316. write(6, '( 2(a, e23.15) )') '<T>=', AveT, ' +- ', RMSD_T
  317. write(6, '( a, i10 )') 'Norm. const.(NSum)= ', NSum
  318.  
  319. endif
  320.  
  321. return
  322. END SUBROUTINE Output
Success #stdin #stdout 0.01s 5320KB
stdin
Standard input is empty
stdout
 ==============================
 MD simulation by Verlet method
 ==============================
  # of particles    =            2
  L-J parameters:
    --> Epsilon     =    1.0000000000000000     
    --> Sigma       =    1.0000000000000000     
  Mass of particle  =    1.0000000000000000     
  Time step         =    1.0000000000000000E-003
  # of MD steps     =         2000
  Simulation time   =    2.0000000000000000     
  Print interval    =    2.0000000000000000E-002

#time,  position,  velocity,  kinetic,  potential,  hamiltonian
0.000000E+00  0.560000E+00 -0.140000E+01  0.196000E+01 -0.999824E+00  0.960175887072273E+00
0.200000E-01  0.532320E+00 -0.134932E+01  0.182066E+01 -0.860533E+00  0.960121964417993E+00
0.400000E-01  0.507182E+00 -0.112304E+01  0.126123E+01 -0.301137E+00  0.960090580658218E+00
0.600000E-01  0.489503E+00 -0.586032E+00  0.343433E+00  0.616813E+00  0.960246059010837E+00
0.800000E-01  0.485578E+00  0.212138E+00  0.450026E-01  0.915340E+00  0.960342572433385E+00
0.100000E+00  0.497246E+00  0.905994E+00  0.820825E+00  0.139312E+00  0.960137612116809E+00
0.120000E+00  0.519541E+00  0.127010E+01  0.161315E+01 -0.653052E+00  0.960095000850587E+00
0.140000E+00  0.546419E+00  0.138919E+01  0.192985E+01 -0.969699E+00  0.960152688210924E+00
0.160000E+00  0.574365E+00  0.139406E+01  0.194340E+01 -0.983206E+00  0.960192963454198E+00
0.180000E+00  0.601915E+00  0.135744E+01  0.184264E+01 -0.882429E+00  0.960210239811629E+00
0.200000E+00  0.628596E+00  0.131024E+01  0.171672E+01 -0.756505E+00  0.960216361568502E+00
0.220000E+00  0.654333E+00  0.126412E+01  0.159801E+01 -0.637788E+00  0.960218086868986E+00
0.240000E+00  0.679194E+00  0.122293E+01  0.149555E+01 -0.535335E+00  0.960218233571789E+00
0.260000E+00  0.703288E+00  0.118745E+01  0.141003E+01 -0.449815E+00  0.960217878396163E+00
0.280000E+00  0.726728E+00  0.115736E+01  0.133949E+01 -0.379274E+00  0.960217415139723E+00
0.300000E+00  0.749614E+00  0.113201E+01  0.128145E+01 -0.321231E+00  0.960216978315257E+00
0.320000E+00  0.772035E+00  0.111067E+01  0.123360E+01 -0.273380E+00  0.960216605724701E+00
0.340000E+00  0.794064E+00  0.109270E+01  0.119399E+01 -0.233775E+00  0.960216300470543E+00
0.360000E+00  0.815762E+00  0.107752E+01  0.116105E+01 -0.200836E+00  0.960216054528575E+00
0.380000E+00  0.837180E+00  0.106467E+01  0.113351E+01 -0.173299E+00  0.960215857520382E+00
0.400000E+00  0.858361E+00  0.105374E+01  0.111038E+01 -0.150160E+00  0.960215699759879E+00
0.420000E+00  0.879340E+00  0.104443E+01  0.109083E+01 -0.130619E+00  0.960215573107241E+00
0.440000E+00  0.900147E+00  0.103646E+01  0.107425E+01 -0.114038E+00  0.960215471019249E+00
0.460000E+00  0.920806E+00  0.102962E+01  0.106012E+01 -0.999062E-01  0.960215388340378E+00
0.480000E+00  0.941338E+00  0.102373E+01  0.104802E+01 -0.878094E-01  0.960215321042081E+00
0.500000E+00  0.961761E+00  0.101864E+01  0.103763E+01 -0.774136E-01  0.960215265983115E+00
0.520000E+00  0.982089E+00  0.101423E+01  0.102866E+01 -0.684457E-01  0.960215220710929E+00
0.540000E+00  0.100233E+01  0.101039E+01  0.102090E+01 -0.606822E-01  0.960215183304489E+00
0.560000E+00  0.102251E+01  0.100705E+01  0.101415E+01 -0.539389E-01  0.960215152252600E+00
0.580000E+00  0.104262E+01  0.100413E+01  0.100828E+01 -0.480631E-01  0.960215126360668E+00
0.600000E+00  0.106268E+01  0.100157E+01  0.100314E+01 -0.429278E-01  0.960215104679524E+00
0.620000E+00  0.108268E+01  0.999321E+00  0.998642E+00 -0.384270E-01  0.960215086451078E+00
0.640000E+00  0.110265E+01  0.997340E+00  0.994687E+00 -0.344717E-01  0.960215071066733E+00
0.660000E+00  0.112258E+01  0.995591E+00  0.991202E+00 -0.309867E-01  0.960215058035447E+00
0.680000E+00  0.114247E+01  0.994044E+00  0.988124E+00 -0.279086E-01  0.960215046959103E+00
0.700000E+00  0.116234E+01  0.992672E+00  0.985399E+00 -0.251835E-01  0.960215037513408E+00
0.720000E+00  0.118218E+01  0.991454E+00  0.982981E+00 -0.227656E-01  0.960215029433023E+00
0.740000E+00  0.120200E+01  0.990369E+00  0.980831E+00 -0.206156E-01  0.960215022499915E+00
0.760000E+00  0.122180E+01  0.989401E+00  0.978915E+00 -0.186998E-01  0.960215016534185E+00
0.780000E+00  0.124158E+01  0.988537E+00  0.977205E+00 -0.169895E-01  0.960215011386825E+00
0.800000E+00  0.126134E+01  0.987762E+00  0.975675E+00 -0.154596E-01  0.960215006933946E+00
0.820000E+00  0.128109E+01  0.987068E+00  0.974304E+00 -0.140886E-01  0.960215003072182E+00
0.840000E+00  0.130082E+01  0.986445E+00  0.973073E+00 -0.128578E-01  0.960214999714992E+00
0.860000E+00  0.132055E+01  0.985883E+00  0.971966E+00 -0.117510E-01  0.960214996789695E+00
0.880000E+00  0.134026E+01  0.985378E+00  0.970969E+00 -0.107541E-01  0.960214994235048E+00
0.900000E+00  0.135996E+01  0.984921E+00  0.970070E+00 -0.985474E-02  0.960214991999300E+00
0.920000E+00  0.137966E+01  0.984509E+00  0.969257E+00 -0.904210E-02  0.960214990038593E+00
0.940000E+00  0.139934E+01  0.984135E+00  0.968522E+00 -0.830674E-02  0.960214988315656E+00
0.960000E+00  0.141902E+01  0.983796E+00  0.967855E+00 -0.764035E-02  0.960214986798732E+00
0.980000E+00  0.143869E+01  0.983489E+00  0.967251E+00 -0.703561E-02  0.960214985460698E+00
0.100000E+01  0.145836E+01  0.983210E+00  0.966701E+00 -0.648608E-02  0.960214984278323E+00
0.102000E+01  0.147802E+01  0.982955E+00  0.966201E+00 -0.598606E-02  0.960214983231674E+00
0.104000E+01  0.149768E+01  0.982723E+00  0.965745E+00 -0.553049E-02  0.960214982303597E+00
0.106000E+01  0.151733E+01  0.982512E+00  0.965330E+00 -0.511492E-02  0.960214981479311E+00
0.108000E+01  0.153698E+01  0.982319E+00  0.964950E+00 -0.473537E-02  0.960214980746034E+00
0.110000E+01  0.155663E+01  0.982142E+00  0.964603E+00 -0.438832E-02  0.960214980092710E+00
0.112000E+01  0.157627E+01  0.981980E+00  0.964286E+00 -0.407061E-02  0.960214979509744E+00
0.114000E+01  0.159590E+01  0.981832E+00  0.963994E+00 -0.377944E-02  0.960214978988796E+00
0.116000E+01  0.161554E+01  0.981696E+00  0.963727E+00 -0.351230E-02  0.960214978522605E+00
0.118000E+01  0.163517E+01  0.981571E+00  0.963482E+00 -0.326696E-02  0.960214978104839E+00
0.120000E+01  0.165480E+01  0.981456E+00  0.963256E+00 -0.304139E-02  0.960214977729961E+00
0.122000E+01  0.167443E+01  0.981350E+00  0.963049E+00 -0.283380E-02  0.960214977393126E+00
0.124000E+01  0.169406E+01  0.981253E+00  0.962858E+00 -0.264256E-02  0.960214977090084E+00
0.126000E+01  0.171368E+01  0.981163E+00  0.962681E+00 -0.246622E-02  0.960214976817106E+00
0.128000E+01  0.173330E+01  0.981080E+00  0.962518E+00 -0.230347E-02  0.960214976570908E+00
0.130000E+01  0.175292E+01  0.981004E+00  0.962368E+00 -0.215311E-02  0.960214976348598E+00
0.132000E+01  0.177254E+01  0.980933E+00  0.962229E+00 -0.201409E-02  0.960214976147626E+00
0.134000E+01  0.179216E+01  0.980867E+00  0.962100E+00 -0.188544E-02  0.960214975965737E+00
0.136000E+01  0.181178E+01  0.980806E+00  0.961981E+00 -0.176627E-02  0.960214975800936E+00
0.138000E+01  0.183139E+01  0.980750E+00  0.961871E+00 -0.165581E-02  0.960214975651457E+00
0.140000E+01  0.185101E+01  0.980698E+00  0.961768E+00 -0.155332E-02  0.960214975515732E+00
0.142000E+01  0.187062E+01  0.980649E+00  0.961673E+00 -0.145816E-02  0.960214975392366E+00
0.144000E+01  0.189023E+01  0.980604E+00  0.961585E+00 -0.136974E-02  0.960214975280122E+00
0.146000E+01  0.190985E+01  0.980562E+00  0.961502E+00 -0.128751E-02  0.960214975177895E+00
0.148000E+01  0.192946E+01  0.980523E+00  0.961426E+00 -0.121098E-02  0.960214975084701E+00
0.150000E+01  0.194907E+01  0.980487E+00  0.961355E+00 -0.113971E-02  0.960214974999661E+00
0.152000E+01  0.196868E+01  0.980453E+00  0.961288E+00 -0.107329E-02  0.960214974921990E+00
0.154000E+01  0.198829E+01  0.980421E+00  0.961226E+00 -0.101134E-02  0.960214974850984E+00
0.156000E+01  0.200789E+01  0.980392E+00  0.961169E+00 -0.953526E-03  0.960214974786013E+00
0.158000E+01  0.202750E+01  0.980364E+00  0.961115E+00 -0.899531E-03  0.960214974726512E+00
0.160000E+01  0.204711E+01  0.980339E+00  0.961064E+00 -0.849070E-03  0.960214974671975E+00
0.162000E+01  0.206671E+01  0.980315E+00  0.961017E+00 -0.801881E-03  0.960214974621946E+00
0.164000E+01  0.208632E+01  0.980292E+00  0.960973E+00 -0.757725E-03  0.960214974576013E+00
0.166000E+01  0.210593E+01  0.980271E+00  0.960931E+00 -0.716380E-03  0.960214974533808E+00
0.168000E+01  0.212553E+01  0.980251E+00  0.960893E+00 -0.677644E-03  0.960214974494997E+00
0.170000E+01  0.214514E+01  0.980233E+00  0.960856E+00 -0.641329E-03  0.960214974459279E+00
0.172000E+01  0.216474E+01  0.980215E+00  0.960822E+00 -0.607266E-03  0.960214974426383E+00
0.174000E+01  0.218434E+01  0.980199E+00  0.960790E+00 -0.575295E-03  0.960214974396063E+00
0.176000E+01  0.220395E+01  0.980184E+00  0.960760E+00 -0.545270E-03  0.960214974368098E+00
0.178000E+01  0.222355E+01  0.980169E+00  0.960732E+00 -0.517059E-03  0.960214974342285E+00
0.180000E+01  0.224316E+01  0.980156E+00  0.960706E+00 -0.490536E-03  0.960214974318442E+00
0.182000E+01  0.226276E+01  0.980143E+00  0.960681E+00 -0.465586E-03  0.960214974296402E+00
0.184000E+01  0.228236E+01  0.980131E+00  0.960657E+00 -0.442105E-03  0.960214974276017E+00
0.186000E+01  0.230196E+01  0.980120E+00  0.960635E+00 -0.419995E-03  0.960214974257149E+00
0.188000E+01  0.232157E+01  0.980109E+00  0.960614E+00 -0.399163E-03  0.960214974239673E+00
0.190000E+01  0.234117E+01  0.980099E+00  0.960595E+00 -0.379528E-03  0.960214974223476E+00
0.192000E+01  0.236077E+01  0.980090E+00  0.960576E+00 -0.361010E-03  0.960214974208455E+00
0.194000E+01  0.238037E+01  0.980081E+00  0.960559E+00 -0.343537E-03  0.960214974194516E+00
0.196000E+01  0.239997E+01  0.980072E+00  0.960542E+00 -0.327044E-03  0.960214974181573E+00
0.198000E+01  0.241957E+01  0.980065E+00  0.960526E+00 -0.311467E-03  0.960214974169547E+00
0.200000E+01  0.243918E+01  0.980057E+00  0.960512E+00 -0.296749E-03  0.960214974158369E+00

 ---------
  Summary 
 ---------
Dt           =  0.100000000000000E-02
V0           =  0.140000000000000E+01
RMSD(H)      =  0.257005031901301E-04
Max. err.(H) =  0.183104453434613E-03
Final pos.   =  0.243917575317050E+01
<H>=  0.960211533737201E+00 +-   0.257005031901301E-04
<T>=  0.104850291831166E+01 +-   0.263355098308746E+00
Norm. const.(NSum)=        2001
  Done.